Recent 3D-based manipulation methods either directly predict the grasp pose using 3D neural networks, or solve the grasp pose using similar objects retrieved from shape databases. However, the former faces generalizability challenges when testing with new robot arms or unseen objects; and the latter assumes that similar objects exist in the databases. We hypothesize that recent 3D modeling methods provides a path towards building digital replica of the evaluation scene that affords physical simulation and supports robust manipulation algorithm learning. We propose to reconstruct high-quality meshes from real-world point clouds using state-of-the-art neural surface reconstruction method (the Real2Sim step). Because most simulators take meshes for fast simulation, the reconstructed meshes enable grasp pose labels generation without human efforts. The generated labels can train grasp network that performs robustly in the real evaluation scene (the Sim2Real step). In synthetic and real experiments, we show that the Real2Sim2Real pipeline performs better than baseline grasp networks trained with a large dataset and a grasp sampling method with retrieval-based reconstruction. The benefit of the Real2Sim2Real pipeline comes from 1) decoupling scene modeling and grasp sampling into sub-problems, and 2) both sub-problems can be solved with sufficiently high quality using recent 3D learning algorithms and mesh-based physical simulation techniques.
translated by 谷歌翻译
深度强化学习方法是最近在计算机视觉和机器人技术社区中进行视觉导航任务的流行方法。在大多数情况下,奖励函数具有二进制结构,即当代理达到目标状态时,将提供大量的积极奖励,并为环境中的每个其他状态分配负面的刑罚。这样的稀疏信号使学习过程具有挑战性,特别是在大环境中,需要采取大量顺序动作才能达到目标。我们引入了奖励成型机制,该机制逐渐根据目标距离逐渐调整奖励信号。使用AI2进行的详细实验 - 该模拟环境证明了对象目标导航任务所提出的方法的功效。
translated by 谷歌翻译
Automatic Image Cropping is a challenging task with many practical downstream applications. The task is often divided into sub-problems - generating cropping candidates, finding the visually important regions, and determining aesthetics to select the most appealing candidate. Prior approaches model one or more of these sub-problems separately, and often combine them sequentially. We propose a novel convolutional neural network (CNN) based method to crop images directly, without explicitly modeling image aesthetics, evaluating multiple crop candidates, or detecting visually salient regions. Our model is trained on a large dataset of images cropped by experienced editors and can simultaneously predict bounding boxes for multiple fixed aspect ratios. We consider the aspect ratio of the cropped image to be a critical factor that influences aesthetics. Prior approaches for automatic image cropping, did not enforce the aspect ratio of the outputs, likely due to a lack of datasets for this task. We, therefore, benchmark our method on public datasets for two related tasks - first, aesthetic image cropping without regard to aspect ratio, and second, thumbnail generation that requires fixed aspect ratio outputs, but where aesthetics are not crucial. We show that our strategy is competitive with or performs better than existing methods in both these tasks. Furthermore, our one-stage model is easier to train and significantly faster than existing two-stage or end-to-end methods for inference. We present a qualitative evaluation study, and find that our model is able to generalize to diverse images from unseen datasets and often retains compositional properties of the original images after cropping. Our results demonstrate that explicitly modeling image aesthetics or visual attention regions is not necessarily required to build a competitive image cropping algorithm.
translated by 谷歌翻译
Riemannian geometry provides powerful tools to explore the latent space of generative models while preserving the inherent structure of the data manifold. Lengths, energies and volume measures can be derived from a pullback metric, defined through the immersion that maps the latent space to the data space. With this in mind, most generative models are stochastic, and so is the pullback metric. Manipulating stochastic objects is strenuous in practice. In order to perform operations such as interpolations, or measuring the distance between data points, we need a deterministic approximation of the pullback metric. In this work, we are defining a new metric as the expected length derived from the stochastic pullback metric. We show this metric is Finslerian, and we compare it with the expected pullback metric. In high dimensions, we show that the metrics converge to each other at a rate of $\mathcal{O}\left(\frac{1}{D}\right)$.
translated by 谷歌翻译
Insects as pollinators play a key role in ecosystem management and world food production. However, insect populations are declining, calling for a necessary global demand of insect monitoring. Existing methods analyze video or time-lapse images of insects in nature, but the analysis is challenging since insects are small objects in complex and dynamic scenes of natural vegetation. The current paper provides a dataset of primary honeybees visiting three different plant species during two months of summer-period. The dataset consists of more than 700,000 time-lapse images from multiple cameras, including more than 100,000 annotated images. The paper presents a new method pipeline for detecting insects in time-lapse RGB-images. The pipeline consists of a two-step process. Firstly, the time-lapse RGB-images are preprocessed to enhance insects in the images. We propose a new prepossessing enhancement method: Motion-Informed-enhancement. The technique uses motion and colors to enhance insects in images. The enhanced images are subsequently fed into a Convolutional Neural network (CNN) object detector. Motion-Informed-enhancement improves the deep learning object detectors You Only Look Once (YOLO) and Faster Region-based Convolutional Neural Networks (Faster R-CNN). Using Motion-Informed-enhancement the YOLO-detector improves average micro F1-score from 0.49 to 0.71, and the Faster R-CNN-detector improves average micro F1-score from 0.32 to 0.56 on the our dataset. Our datasets are published on: https://vision.eng.au.dk/mie/
translated by 谷歌翻译
In today's uncertain and competitive market, where enterprises are subjected to increasingly shortened product life-cycles and frequent volume changes, reconfigurable manufacturing systems (RMS) applications play a significant role in the manufacturing industry's success. Despite the advantages offered by RMS, achieving a high-efficiency degree constitutes a challenging task for stakeholders and decision-makers when they face the trade-off decisions inherent in these complex systems. This study addresses work tasks and resource allocations to workstations together with buffer capacity allocation in RMS. The aim is to simultaneously maximize throughput and minimize total buffer capacity under fluctuating production volumes and capacity changes while considering the stochastic behavior of the system. An enhanced simulation-based multi-objective optimization (SMO) approach with customized simulation and optimization components is proposed to address the abovementioned challenges. Apart from presenting the optimal solutions subject to volume and capacity changes, the proposed approach support decision-makers with discovered knowledge to further understand the RMS design. In particular, this study presents a problem-specific customized SMO combined with a novel flexible pattern mining method for optimizing RMS and conducting post-optimal analyzes. To this extent, this study demonstrates the benefits of applying SMO and knowledge discovery methods for fast decision-support and production planning of RMS.
translated by 谷歌翻译
Adaptation-relevant predictions of climate change are often derived by combining climate models in a multi-model ensemble. Model evaluation methods used in performance-based ensemble weighting schemes have limitations in the context of high-impact extreme events. We introduce a locally time-invariant model evaluation method with focus on assessing the simulation of extremes. We explore the behaviour of the proposed method in predicting extreme heat days in Nairobi.
translated by 谷歌翻译
Many scientific domains gather sufficient labels to train machine algorithms through human-in-the-loop techniques provided by the Zooniverse.org citizen science platform. As the range of projects, task types and data rates increase, acceleration of model training is of paramount concern to focus volunteer effort where most needed. The application of Transfer Learning (TL) between Zooniverse projects holds promise as a solution. However, understanding the effectiveness of TL approaches that pretrain on large-scale generic image sets vs. images with similar characteristics possibly from similar tasks is an open challenge. We apply a generative segmentation model on two Zooniverse project-based data sets: (1) to identify fat droplets in liver cells (FatChecker; FC) and (2) the identification of kelp beds in satellite images (Floating Forests; FF) through transfer learning from the first project. We compare and contrast its performance with a TL model based on the COCO image set, and subsequently with baseline counterparts. We find that both the FC and COCO TL models perform better than the baseline cases when using >75% of the original training sample size. The COCO-based TL model generally performs better than the FC-based one, likely due to its generalized features. Our investigations provide important insights into usage of TL approaches on multi-domain data hosted across different Zooniverse projects, enabling future projects to accelerate task completion.
translated by 谷歌翻译
This paper presents an accurate, highly efficient, and learning-free method for large-scale odometry estimation using spinning radar, empirically found to generalize well across very diverse environments -- outdoors, from urban to woodland, and indoors in warehouses and mines - without changing parameters. Our method integrates motion compensation within a sweep with one-to-many scan registration that minimizes distances between nearby oriented surface points and mitigates outliers with a robust loss function. Extending our previous approach CFEAR, we present an in-depth investigation on a wider range of data sets, quantifying the importance of filtering, resolution, registration cost and loss functions, keyframe history, and motion compensation. We present a new solving strategy and configuration that overcomes previous issues with sparsity and bias, and improves our state-of-the-art by 38%, thus, surprisingly, outperforming radar SLAM and approaching lidar SLAM. The most accurate configuration achieves 1.09% error at 5Hz on the Oxford benchmark, and the fastest achieves 1.79% error at 160Hz.
translated by 谷歌翻译
Biological cortical networks are potentially fully recurrent networks without any distinct output layer, where recognition may instead rely on the distribution of activity across its neurons. Because such biological networks can have rich dynamics, they are well-designed to cope with dynamical interactions of the types that occur in nature, while traditional machine learning networks may struggle to make sense of such data. Here we connected a simple model neuronal network (based on the 'linear summation neuron model' featuring biologically realistic dynamics (LSM), consisting of 10 of excitatory and 10 inhibitory neurons, randomly connected) to a robot finger with multiple types of force sensors when interacting with materials of different levels of compliance. Scope: to explore the performance of the network on classification accuracy. Therefore, we compared the performance of the network output with principal component analysis of statistical features of the sensory data as well as its mechanical properties. Remarkably, even though the LSM was a very small and untrained network, and merely designed to provide rich internal network dynamics while the neuron model itself was highly simplified, we found that the LSM outperformed these other statistical approaches in terms of accuracy.
translated by 谷歌翻译